744 research outputs found

    On a flow of transformations of a Wiener space

    Full text link
    In this paper, we define, via Fourier transform, an ergodic flow of transformations of a Wiener space which preserves the law of the Ornstein-Uhlenbeck process and which interpolates the iterations of a transformation previously defined by Jeulin and Yor. Then, we give a more explicit expression for this flow, and we construct from it a continuous gaussian process indexed by R^2, such that all its restriction obtained by fixing the first coordinate are Ornstein-Uhlenbeck processes

    A stochastic derivation of the geodesic rule

    Full text link
    We argue that the geodesic rule, for global defects, is a consequence of the randomness of the values of the Goldstone field ϕ\phi in each causally connected volume. As these volumes collide and coalescence, ϕ\phi evolves by performing a random walk on the vacuum manifold M\mathcal{M}. We derive a Fokker-Planck equation that describes the continuum limit of this process. Its fundamental solution is the heat kernel on M\mathcal{M}, whose leading asymptotic behavior establishes the geodesic rule.Comment: 12 pages, No figures. To be published in Int. Jour. Mod. Phys.

    Three-dimensional flows in slowly-varying planar geometries

    Full text link
    We consider laminar flow in channels constrained geometrically to remain between two parallel planes; this geometry is typical of microchannels obtained with a single step by current microfabrication techniques. For pressure-driven Stokes flow in this geometry and assuming that the channel dimensions change slowly in the streamwise direction, we show that the velocity component perpendicular to the constraint plane cannot be zero unless the channel has both constant curvature and constant cross-sectional width. This result implies that it is, in principle, possible to design "planar mixers", i.e. passive mixers for channels that are constrained to lie in a flat layer using only streamwise variations of their in-plane dimensions. Numerical results are presented for the case of a channel with sinusoidally varying width

    Derivation of quantum work equalities using quantum Feynman-Kac formula

    Full text link
    On the basis of a quantum mechanical analogue of the famous Feynman-Kac formula and the Kolmogorov picture, we present a novel method to derive nonequilibrium work equalities for isolated quantum systems, which include the Jarzynski equality and Bochkov-Kuzovlev equality. Compared with previous methods in the literature, our method shows higher similarity in form to that deriving the classical fluctuation relations, which would give important insight when exploring new quantum fluctuation relations.Comment: 5 page

    Large Deviations in Stochastic Heat-Conduction Processes Provide a Gradient-Flow Structure for Heat Conduction

    Get PDF
    We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter mm, a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m)(m) and the KMP, and a nonlinear heat equation for the GBEP(aa). We prove the hydrodynamic limit rigorously for the BEP(m)(m), and give a formal derivation for the GBEP(aa). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form logρ-\log \rho; they involve dissipation or mobility terms of order ρ2\rho^2 for the linear heat equation, and a nonlinear function of ρ\rho for the nonlinear heat equation.Comment: 29 page

    Quantum Diffusion and Delocalization for Band Matrices with General Distribution

    Full text link
    We consider Hermitian and symmetric random band matrices HH in d1d \geq 1 dimensions. The matrix elements HxyH_{xy}, indexed by x,yΛZdx,y \in \Lambda \subset \Z^d, are independent and their variances satisfy \sigma_{xy}^2:=\E \abs{H_{xy}}^2 = W^{-d} f((x - y)/W) for some probability density ff. We assume that the law of each matrix element HxyH_{xy} is symmetric and exhibits subexponential decay. We prove that the time evolution of a quantum particle subject to the Hamiltonian HH is diffusive on time scales tWd/3t\ll W^{d/3}. We also show that the localization length of the eigenvectors of HH is larger than a factor Wd/6W^{d/6} times the band width WW. All results are uniform in the size \abs{\Lambda} of the matrix. This extends our recent result \cite{erdosknowles} to general band matrices. As another consequence of our proof we show that, for a larger class of random matrices satisfying xσxy2=1\sum_x\sigma_{xy}^2=1 for all yy, the largest eigenvalue of HH is bounded with high probability by 2+M2/3+ϵ2 + M^{-2/3 + \epsilon} for any ϵ>0\epsilon > 0, where M \deq 1 / (\max_{x,y} \sigma_{xy}^2).Comment: Corrected typos and some inaccuracies in appendix
    corecore